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Abstract 

Kaiman-Filter models with Gaussian innovations provide a useful and easy to 

implement tool for inference from dose-response experiments and accelerated life- 

tests.   Their main advantage stems from the fact that the system equation of such 

models alllows for the uncertainty and possible changes in a proposed dose-response 

relationship.    This is in contrast to the currently used approaches wherein there is 

an implicit commitment to the validity of an assumed relationship.    In this paper, we 

overview our recent work in the above general area and suggest avenues for future 

research. 
Accesion For 

NTIS    CRA&I 
DTiC    TAB 
Unannounced 
Justification 

I 
D. 

By  
Distribution! 

Availability Codes 

I Avai! and / or 
Dist Special 

£/] 



1.    INTRODUCTION 

In its simplest form, a Kalman-Filter model relates an observed value Yt at 

time t, t = l, 2,..., to an unknown (vector or scalar) quantity 0t  — the state of 

nature - via the observation equation Yt  =- Ft 0t  -f rt, where Ft is a known 

coefficient and {rJ a sequence of innovations assumed to be Gaussian with known 

parameters.   What distinguishes a Kalman-Filter model from the standard regression 

models, is the consideration of a system equation wherein 0t is related to its 

previous value 9t_j via the relationship 0t = Gtet-1  + wt' where Gt is a knoWT1 

coefficient and {wJ a sequence of uncorrelated innovations, assumed Gaussian with 

known parameters.   Furthermore, the wt's are contemporaneously uncorrelated with 

the rt's.   Given the observations Yp Y2,...,Yt> the Kalman-Filter algorithm enables 

us to obtain the posterior distribution of 0t in a recursive manner.   The algorithm 

is started-off by specifying the mean and the covariance of the prior distribution 

of 0O.    Literature on Kalman-Filter models and algorithms for the efficient 

computation of the posterior distribution of 0t, under various scenarios and 

generalizations of the above theme, is typically available in the engineering and 

control theory journals.   Statisticians have recently become interested in such 

models, and a possible source of introduction is the expository paper by Meinhold 

and Singpurwalla (1983). 

The accelerated life-testing set-up can be best described via the following 

scenario:    we are given stresses (or doses) Sj  > S2 ...  > St  > St+p and under Sj an 

item has life-length T:, with the T-'s assumed stochastically increasing in j.   Given 

the observed realizations of Tp T2,...,Tt, we need to make statements of 

uncertainty about T,+1; we may or may not have realizations of Tt+^.    It is common 

- though rather restrictive - to assume that T- has an exponential distribution 



with a mean 0 , and so what is desired is inference about 0t+1-    An important 

ingredient for inference about 0t+1 given the realizations of Tp...,Tt (and perhaps 

T\   ,), is a relationship (or model) which connects the 0's and the S's.   Such a 

relationship is referred to as a time transformation function, and the choice of such 

functions should be dictated by considerations embedded in the physics, the 

chemistry or the biology of the failure generating mechanism.   This is an issue 

which calls for collaboration between statisticians and their colleagues in the 

engineering and the natural sciences and presents an opportunity for meaningful new 

work in accelerated life testing.   The current literature on accelerated life testing 

focuses attention on two commonly used time transformation functions, both of 

which appear to have a naive physical basis.   These are, the Power Law, under 

which 0    = a S    J, and the Arrhenius' Law, under which 6    = exp(a ■+0-/S ■), where 
j J J J j       J    J 

a.   and 4>   are unknown constants - see Mann, Schäfer and Singpurwalla (1974), 

p. 421.   Notwithstanding the comment that the above two relationships may have a 

naive physical basis, there is also some concern that the validity of these 

relationships may not hold over the entire range of the stresses.    High values of 

the stress may trigger a change in the basic failure generating mechanism calling for 

different time transformation functions over different ranges of the stress.   Casting 

the time transformation function as the system equation of a Kalman-Filter model, 

enables us - via the innovation terms wt - not only to incorporate a measure of 

uncertainty about the time transformation function, but also to better track changes 

in such functions. 

The dose-response and the damage assessment scenarios that are of interest 

to us here, can be described as follows:    we are given a dose (or stress) say X, with 

X taking values x ■, j=l,...,T, and x= € [0, oo].   We may or may not be able to 
J J 



control the values x    precisely, and under each x, we are able to test one or more 

specimens of an item of interest.   Let Y(Xj) denote the response under dose Xj and 

let Y(x ) e (0, 1); for example, YCxJ could represent the proportion of items damaged 

or the extent of damage to a particular item.    We assume that the response is a 

nonlinear function of the dose; specifically E(Y(x))   = exp(-a(x)x    X ), where <x(x) 

and ßU) are unknown constants.   The above relationship, which resembles the 

survival function of a Weibull distribution, is like the time transformation function 

of accelerated life tests.   It's key advantages are that it can be easily linearized 

and that it is flexible enough to represent many shapes that are candidates for 

describing the relationship between the dose and its response.   Given the Xj's and 

their associated Yj's, j = l,...,T, our aim is to make inferences about a(x) and 0(x) 

and use these to assess our uncertainty about Y(x0) for any x0  ^ Xy 

2.   KALMAN-FILTER MODELS FOR ACCELERATED LIFE-TESTS 

We have proposed two strategies for inference from accelerated life tests, 

using Kalman-Filter models.   The first one, described in Meinhold and Singpurwalla 

(1984), is applicable when a large number of items are tested to failure at each 

stress level.    Its main advantage is computational, since it results in a direct 

application of the Kalman-Filter algorithm with serially uncorrelated innovations for 

the observation equation.   The second one, described in Blackwell and Singpurwalla 

(1988), is applicable for smaller sample sizes but requires a computationally more 

intensive effort, since the resulting observation equation of the Kalman-Filter 

contains serially correlated innovations.   Engineers refer to Kalman-Filter models 

with correlated innovations in the system equation as filtering in coloured noise. 

We shall first outline the former of the above two strategies. 



Strategy 1-   Suppose that n . items are tested to failure under stress Sj, and 

let X    be the sample mean of the n: observed life-lengths.    Let Yj  =   — log Xjj then 

it can be shown that the cumulants of Yj approach those of a Gaussian distribution, 

suggesting that the observation equation of a Kalman-Filter be formulated in terms 

of Y-.   Specifically, we let Zj = log nj  - ¥Knj)  - Yj, where $(n-) is the digarama 

function, write the observation equation of the Kalman-Filter as Zj = log 0j  -f Tj, 

and argue that r; ~ MO, ^(n,)), where tf'diJ is the first derivative of the digamma 
j j J 

function; the notation "X  ~ X(ß, a)" denotes the fact that X has a Gaussian 

distribution with mean ß and variance <J.   The sequence of innovations r^ r2, ... ,rt, 

are assumed to be uncorrelated.    The above form of the observation equation is 

motivated by the fact that Kj and K2, the first and the second cumulant of the 

distribution of Y:, given Q-, are of the form Kj  = lognj  - logöj  - tf(iij) and K2 

= ^(Bj). 

For the system equations of the Kalman-Filter, we argue that the 

Arrhenius and the Power Law, suggest the general form 

log 9j     =    log 0j_j  + ^j hCSj.Sj^)  + Uj, and 

*j     =    *j-l  + VJ' With 

the vector [u •, v ]  — MO, S;), where £ ; is the covariance of u ■ and v: under stress 
J     J J J j J 

j, h(s-, s. ,) is of the form (S"/ - S'\) for the Arrhenius Law, with Uj = Vj/Sj_p 

and of the form logCSj/S^) with Uj  = VjlogCS"^) for the Power Law.   Since Uj and 

v , the components of the innovation term of the system equations are related to 

each other, we may write Uj = /SjVj  -f Wj is an innovation that is independent of 

v- and ß-  = S'lx (log S"^) for the Arrhenius (Power) Law.   It now follows that for 



^ ßj Var(vj)  + Var(Wj) 0j Var(Vj) 

ßi VarCvj) Var(Vj) 
J J J 

To use the above scheme as a system equation of the Kalman-Filter, we must 

specify Var(v ), Var(w :) and the starting values 0O and <f»0.   The quantity Var(Wj) 

reflects our faith in the constancy of the prescribed Law (Arrhenius or Power) in 

going from one stress level to another, whereas the quantity Var(Wj) specifies our 

faith in the validity of the prescribed Law.   Once the above have been done, an 

implementation of the Kalman-Filter algorithm is straightforward. 

Strategy 2.   For purposes of discussion, we focus attention on the j-th stress 

level, and suppose that TjX  < Tj2 < ...  < Tjn are the ordered times of failure of 

the n items tested under Sj5 that is Tjk, k=l, ... , n are the order statistics of Tj. 

Let t k be the realization of Tjk-   It is well known that Gj(u), the survival function 

of T , is given by Gj(u) = exp(-J^ hj(u)du), where hj(-) is the failure rate of Ty 

u ^j  — 
Let H (u) = J    h:(s)ds, then under the Power Law 6j  — cCjSj    , Gj(Tjk) 

= expl—H(T-k)]  = exp[-a.jSj J TjkJ.    The above motivates us to define y*k  = log 

t       Fj    = (-1,  -log Sj), aJk  = (log aj5 ^), v*k = log {-log Gj (Tjk)}, and 

consider, as a model of observations yjk  = Fjajk + vjk' where ^jk  = yjk  ~ 

E(v*k) and v k = v*k  - E(v*k).   Since the distribution of v*k is known  — note 

that G (t k) has a beta distribution  - the quantity E(vJk) is known.   Even though 

we know the distribution of v-k, we are unable to analytically assert that it is 

Gaussian.   However, some empirical work suggests that the assumption of 

Gaussianity for v k is reasonable when:    n is as small as 10 and k close to n; n is 



greater than 10 and k moderate to large; n is greater than 25 and k as small as 6.    It 

should also be clear that the vjk's are correlated for k=l, ..., n, and that the 

correlations are known; this information should be incorporated in the filtering 

algorithm. 

For the system equation, we propose the steady-model of Harrison and 

Stevens (1976); that is 

G a.-,.   ,y   when the last observed failure is y^__iy 

a-u    = 
J GctC   1)k + w'k'   when the last observed failure 1S y(j-l)k; 

G   is a 2x2 identity matrix and wjk  = (w1Jk, w2fjk).   The innovations wl,jk and 

w9 -,   are assumed to be independent and Gaussian with mean 0 and covariance £w, 

assumed known.   The entries for Sw reflect our faith about the constancy of CXJ 

and <t> ■ in going from one stress level to the other.   A computer program which 

implements the filtering algorithm under the above scheme has been used by us on 

data from a realistic scenario and also some simulated data; the details can be found 

in Blackwell and Singpurwalla (1988). 

3.   A KALMAN-FILTER MODEL FOR DOSE-RESPONSE EXPERIMENTS 

Following the notaiton of Section 1, we let Y*(x) = log{-log Y(x)} and 

require that Y*(x) ~ X(/z(x), cr2(x)); this implies that Y(x) must have a double- 

lognormal distribution with parameters Mx) and ernx).   The density function of this 

distribution is flexible enough to represent a variety of subjective opinions on Y(x); 

when CT
2

(X) is small the mean of Y(x) is exp(-exp(Mx)), and so is its median. 

However, since we have assumed that the relationship between the dose and the 



response is of the form E(Y(x))  = exp(—cc(x)xP     ), it follows that ß(x)  = logcz(x) 

-r   /3(x)logx   = E(Y*(x)).   The above therefore prompts us to write, as a model of 

observations the relationship 

Y"(Xj)    =   [1,   logxj] +    rJ» 

where (7, ßYj = (7jt 0/ with 7j = log(Xj), ßj = j8(Xj), and rj - MO, a (Xj)). 

For the system equation of the Kalman-Filter, we propose the steady model 

(7, 0)'j    =   (7, ß)'yl + Wj 

with w-  ~ MO, W).   The quantities cr2(xj and Wj have to be specified by us; some 
J J j J 

hints of choosing these, and other related matters are given in Meinhold and 

Singpurwalla (1987).   Once the above have been done, an application of the Kalman- 

Filter mechanism proceeds routinely. 
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